Gaps between consecutive zeros of the Riemann zeta-function

نویسنده

  • Hung Manh Bui
چکیده

An important problem in number theory is to study the distribution of the non-trivial zeros of the Riemann zeta-function which, if one is willing to assume the Riemann Hypothesis, all lie on a vertical line. It is relatively easy to count how many of these zeros lie in a large interval, so the average spacing between consecutive zeros is easy to compute. However, it is a difficult and interesting problem to show that there are many consecutive zeros that have spacings that are larger or smaller than average. In this talk I will describe a method that shows there are infinitely many pairs of consecutive zeros of the zeta-function where the the gap between them is more than 3 times the average spacing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large gaps between consecutive zeros of the Riemann zeta-function

Combining the mollifiers, we exhibit other choices of coefficients that improve the results on large gaps between the zeros of the Riemann zeta-function. Precisely, assuming the Generalized Riemann Hypothesis (GRH), we show that there exist infinitely many consecutive gaps greater than 3.0155 times the average spacing.

متن کامل

A small improvement in the gaps between consecutive zeros of the Riemann zeta-function

Feng and Wu introduced a new general coefficient sequence into Montgomery and Odlyzko’s method for exhibiting irregularity in the gaps between consecutive zeros of ζ (s) assuming the Riemann hypothesis. They used a special case of their sequence to improve upon earlier results on the gaps. In this paper we consider a general sequence related to that of Feng and Wu, and introduce a somewhat less...

متن کامل

Pair correlation of the zeros of the derivative of the Riemann ξ-function

Abstract. The complex zeros of the Riemannn zeta-function are identical to the zeros of the Riemann xi-function, ξ(s). Thus, if the Riemann Hypothesis is true for the zetafunction, it is true for ξ(s). Since ξ(s) is entire, the zeros of ξ(s), its derivative, would then also satisfy a Riemann Hypothesis. We investigate the pair correlation function of the zeros of ξ(s) under the assumption that ...

متن کامل

Applications of Wirtinger Inequalities on the Distribution of Zeros of the Riemann Zeta-Function

On the hypothesis that the 2k th moments of the Hardy Z-function are correctly predicted by random matrix theory and the moments of the derivative of Z are correctly predicted by the derivative of the characteristic polynomials of unitary matrices, we establish new large spaces between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities. In particular, it is obt...

متن کامل

Large Gaps between the Zeros of the Riemann Zeta Function

If the Riemann hypothesis (RH) is true then the non-trivial zeros of the Riemann zeta function, ζ(s), satisfy 1/2+iγn with γn ∈ R. Riemann noted that the argument principle implies that number of zeros of ζ(s) in the box with vertices 0, 1, 1 + iT, and iT is N(T ) ∼ (T/2π) log (T/2πe). This implies that on average (γn+1 − γn) ≈ 2π/ log γn and hence the average spacing of the sequence γ̂n = γn lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009